. – Merci, Mesdames et Messieurs, de m'accorder ce temps d'intervention. Je suis ravie de partager avec vous mes réflexions sur ce sujet très important. Je suis ingénieure de formation. J'ai fait mes études à l'université de Columbia, aux États-Unis, où j'ai été profondément marquée de ne faire partie que de la deuxième promotion d'ingénieurs acceptant les filles. Nous ne représentions que 10 % de l'effectif, quelques années avant l'essor d'Internet. Très peu de femmes travaillaient sur les technologies qui allaient révolutionner le monde, pas parce qu'elles ne le souhaitaient pas, mais parce qu'elles en étaient exclues.
Pendant toute ma carrière au service des infrastructures et des technologies des données, j'ai été très attentive aux sujets de représentativité des femmes. C'est la raison pour laquelle j'ai cofondé en 2018 la Fondation Abeona pour promouvoir l'intelligence artificielle responsable et contribuer à un monde plus juste, durable et inclusif.
L'un de nos premiers constats concernait les biais dans les algorithmes. Les gens en avaient peur, ne comprenant pas de quoi il s'agissait. Toute la recherche, tous les travaux, tous les discours sur le sujet venaient des États-Unis. Nous avons donc créé un groupe de travail pour implanter ces réflexions en France. Nous avons produit un rapport, dont je suis rapporteure générale.
L'IA est-elle sexiste ? Contrairement à ce que dit Jessica, je dirai qu'elle ne l'est pas en soi, puisqu'elle est une technologie, mais elle est programmée par des humains et entraînée sur des bases de données qui reflètent la réalité de nos sociétés. Les résultats qu'elle délivre peuvent donc inclure un biais de genre.
On distingue deux types de biais : les biais des sociétés, présents dans les données utilisées par l'algorithme pour apprendre, et les biais techniques, qu'on introduit pendant le processus de développement d'algorithmes. L'intelligence artificielle va standardiser et diffuser largement ces biais une fois qu'ils sont appris.
Mais qu'est-ce qu'un biais ? C'est simplement un écart entre ce que dit l'algorithme et les résultats justes. Qu'entend-on par « résultats justes » ? Pour y répondre, je vais prendre quelques exemples.
Les données peuvent être biaisées, mais leur sélection faite par les ingénieurs peut aussi créer des biais dans les algorithmes. En 2018, Amazon a décidé d'automatiser ses recrutements, en donnant à l'intelligence artificielle les données à sa disposition, à savoir les CV des personnes qui travaillaient déjà dans l'entreprise, en majorité des hommes. L'intelligence artificielle a donc compris qu'elle devait évincer les femmes, mais aussi les hommes dont le CV laissait apparaître le mot « femme », parce qu'ils entraînaient une équipe féminine de basketball, par exemple.
Il existe également un biais dans les données. Une équipe de chercheuses s'est aperçue qu'il existait moins de pages Wikipédia sur des femmes que sur des hommes. À titre d'exemple, Donna Strickland n'avait aucune page Wikipédia, contrairement à d'autres prix Nobel de physique. Les femmes manquaient. Cette équipe a alors décidé de moissonner largement les données disponibles sur Internet pour générer automatiquement des articles sur les femmes. À cette occasion, les chercheuses se sont aperçues que ces articles étaient beaucoup plus courts lorsqu'ils concernaient des femmes que des hommes, qu'ils étaient plus pauvres en informations. Ils traitaient un peu de leur profession, avant de se recentrer rapidement sur leur mari. En outre, les articles sur les actrices et autres personnalités féminines comportent toujours des descriptions physiques. Ce n'est pas le cas lorsqu'ils concernent les hommes. Si l'on utilise ce genre de données pour nos intelligences artificielles génératives, elles reproduiront évidemment ces stéréotypes et ces biais. Nous devons y être attentifs.
Ensuite, j'ai demandé à ChatGPT il y a un an de rédiger un poème sur les femmes en blouse. J'imagine que depuis, l'équipe a tenté de corriger ce biais, mais permettez-moi de vous donner lecture de sa réponse : « Si vous voyez une femme en blouse de laboratoire, elle ne fait que nettoyer le sol, bien sûr. Mais si vous voyez un homme en blouse de laboratoire, ses connaissances et compétences sont à votre portée avec un peu de détours. » On se demande de quels détours il s'agit, mais c'est évidemment un biais. De même, si je demande à une IA générative de générer l'image d'une femme en blouse, il est probable que j'obtienne la représentation d'une femme qui fait le ménage.
Le dernier exemple que j'aimerais exposer, un peu controversé, ne concerne même pas l'intelligence artificielle, mais celui de personnes qui ont entraîné un algorithme sur des données existantes. La Caisse nationale d'allocations familiales (CNAF) a décidé de prévenir les fraudes en trouvant des profils d'allocataires susceptibles d'avoir commis des irrégularités. Les responsables ont décidé eux-mêmes des critères qui pourraient s'apparenter à « fraude ». Ils ont identifié les familles monoparentales, composées à 80 % de femmes. Ils ont donc stigmatisé des femmes, manuellement. Si l'intelligence artificielle avait été déployée sur ces dossiers, elle aurait fait mieux que les individus à l'origine de cet outil. L'IA n'est pas toujours mauvaise. Elle peut être très utile pour détecter des biais.
Quelles sont les solutions ? D'abord, d'un point de vue technique, nous devons tester les algorithmes, exiger la transparence et des paramètres de contrôlabilité. Surtout, nous devons comprendre sur quelles données ils ont été entraînés. Il me semble que les solutions doivent surtout être d'ordre sociétal et politique. Si la société est sexiste, l'intelligence artificielle a toutes les chances de le devenir. Pour cette raison, il nous faut mieux représenter les femmes dans les métiers technologiques. Si la représentation de notre société est plus égalitaire, l'IA le sera également.
Ainsi, nous avons besoin de plus de femmes dans les métiers scientifiques et technologiques. Nous devons également former les citoyens, leur faire comprendre les enjeux de ces technologies pour réduire les inquiétudes. La Fondation Abeona a d'ailleurs créé un cours gratuit sur l'intelligence artificielle, avec l'aide de partenaires. Il est disponible sur Internet, accessible à tous, et ne demande pas de prérequis mathématiques. Nous avons aujourd'hui formé et sensibilisé plus de 300 000 personnes à l'IA en France. Nous avons développé ce cours en français, puis l'avons traduit en anglais.
Nous espérons que le nombre de personnes formées sur ces sujets augmentera progressivement. Le Canada essaie d'y former ses citoyens.
Pour aller plus loin, la Fondation Abeona, l'École normale supérieure-PSL et l'Université Paris Dauphine-PSL ont créé L'Institut IA & Société. Ce dernier a pour mission de rechercher, informer, former et influencer. Nous espérons produire des travaux que vous pourrez consulter. Ce sexisme doit prendre fin. Les femmes doivent être visibles dans nos sociétés.