. – Sur les études de danger relatives aux stockages, je vais faire la différence entre l'évaluation de l'évolution du stockage sous des conditions normales, l'évolution géologique et l'évolution liée au changement climatique. Tous ces aspects sont observés avec attention. En revanche, la partie sécurité, c'est-à-dire l'impact des intrusions ou des actes de malveillance, nous échappe totalement.
Concernant la loi de 2006, nous avions souligné dans le rapport n° 15 ou le rapport n° 14 la nécessité pour la France de s'y conformer.
J'ai évoqué tout à l'heure les AMR. On met sous ce sigle des projets de réacteurs à neutrons rapides, mais également beaucoup d'autres éléments, par exemple les réacteurs à haute température, les réacteurs brûleurs d'actinides ou encore les réacteurs de fusion.
Je souhaiterais revenir sur la différence entre la transmutation et les RNR, des réacteurs à neutrons rapides ayant la particularité de pouvoir utiliser du combustible fertile. Les RNR vont brûler du plutonium, celui-ci étant par ailleurs régénéré par la fertilisation ou la capture neutronique sur de l'uranium appauvri. En fonction de la manière dont on règle son mode de fonctionnement, le réacteur peut produire exactement la même quantité de plutonium que celle qu'il consomme. Il est donc isogénérateur. On se trouve donc dans un cycle vertueux où en utilisant de l'uranium appauvri, nous devenons indépendants, y compris de l'amont. Nous n'avons donc plus besoin de mines d'uranium, puisqu‘on peut utiliser l'uranium appauvri disponible, qui fabrique le plutonium qui, lui-même, sera consommé.
La transmutation repose également sur des neutrons rapides. Elle est plutôt destinée à détruire tout ce qui est au-delà de l'uranium dans la classification périodique des éléments, comme éventuellement le plutonium, mais surtout les actinides mineurs. Nous considérons que le plutonium est une matière et qu'il y a lieu de l'utiliser de la manière la plus efficace possible dans un réacteur à neutrons rapides pour fabriquer de l'électricité. Le problème au regard du stockage des déchets ultimes vient surtout des actinides mineurs, que la transmutation vise plutôt à détruire.
La transmutation ne règle cependant pas la question du stockage.
Le combustible retraité et les déchets déjà sous forme de verre ne sont pas retraitables. Les MAVL, les déchets de moyenne activité, ne sont pas transmutables. Les FAVL le sont encore moins.
La transmutation peut permettre de détruire un certain nombre d'actinides mineurs, en particulier l'américium, ce qui constitue déjà un grand pas en avant, car cet élément représente la partie la plus thermique des déchets. En l'éliminant, le colis devient donc moins thermique, ce qui permet de concentrer les déchets. L'emprise du stockage devient ainsi bien plus faible, ou bien sa capacité est accrue à emprise égale.
La transmutation et la destruction de l'américium contribuent donc à l'optimisation du stockage même si, à la fin, une partie des actinides mineurs et tous les produits de fission ne seront pas détruits.
J'en viens aux réacteurs « 40 ans ». Cette durée a surtout été utilisée comme variable de dimensionnement de l'amortissement. La qualification du réacteur est réautorisée tous les dix ans et accompagnée d'une visite décennale, y compris pour les échéances de 50 ans et de 60 ans, voire plus. Cela dépend des investissements qui peuvent être consentis par l'industriel, mais surtout de l'autorité de sûreté.
De nombreux projets portés par le secteur privé reposent sur des réacteurs à neutrons rapides qui pourraient permettre, même en l'absence d'Astrid, de revenir beaucoup plus vite qu'imaginé à la technologie RNR.